Full-scale fatigue simulation of the deterioration mechanism of reinforced concrete road bridge slabs under dry and wet conditions
نویسندگان
چکیده
This study investigates the deterioration process and mechanism of reinforced concrete (RC) slabs in road bridges under dry stagnant water (wet) conditions. Previous studies used a simple-plate model (SPM) to predict fatigue life RC decks by considering conservative assumptions for safer assessment different environmental processes. To obtain more detailed analysis clarify result mechanism, full-scale superstructure realistic bridge is this study. The simulation results reveal differences between (FSM) SPM due size effects boundary findings also demonstrate that failure FSM simulations differs wet In cases, damage easily occurs at bottom surface slab. However, horizontal cracks disintegration occur below top near upper rebar layer slab during early stage over very short time period, which cannot be visually investigated according current inspection regulations. These successfully reproduce phenomenon occurred on site, indicates credibility simulation. Then effect two wheel-loading studied assess continuity adjacent panels. provides useful reference rational design maintenance bridges.
منابع مشابه
the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)
cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...
construction and validation of the translation teacher competency test and the scale of students’ perceptions of translation teachers
the major purpose of this study was to develop the translation teacher competency test (ttct) and examine its construct and predictive validity. the present study was conducted in two phases: a qualitative phase as well as a quantitative phase. in the first phase of the study, the author attempted to find out the major areas of competency required for an academic translation teacher. the second...
Behaviour of fibre reinforced concrete slabs
This paper presents a comparison of the properties of concrete slabs when two types of fibres are added. One specimen had no fibres and acted as a control specimen. The remaining four specimens had steel and polypropylene fibres added in the volumetric ratio of 0.5% and 1.0%. The dimensions of the slab specimens were 820×820×80 mm and were supported by four rollers at their edges. A displacemen...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولIntegration of Deterioration Modelling and Reliability Assessment for Reinforced Concrete Bridge Structures
Deterioration of reinforced concrete and the reliability of deteriorating structures have been, and still are, widely researched fields. A critical aspect of this research effort is the integration of deterioration modelling with reliability assessment. This paper focuses on this issue and illustrates how the integration of these techniques can lead towards more realistic predictions of the tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Structures
سال: 2021
ISSN: ['0141-0296', '1873-7323']
DOI: https://doi.org/10.1016/j.engstruct.2021.112988